

Digital Differential Analyser DDA

Cons) Floating-point operations are expensive

- ■A line in 2D is defined as: y = kx + m where: x and y are variables (screen coordinates)
- Starts at (x_0, y_0) and ends at (x_1, y_1)
- slope: $k = \frac{\Delta y}{\Delta x} = \frac{(y_1 y_0)}{(x_1 x_0)}$
- ■Algorithm:
 - *Start at (x_0, y_0) ;
 - *Increase x by 1 and y by k
 - *repeat until $x=x_1$

or Increase y by 1 and x by 1/k if k > 1 Institutionen för informationsteknologi www.it.uu.se

Cohen-Sutherland (in 2D)

- Divide space in 9 regions
- And assign codes to them depending on position

Institutionen för informationsteknologi | www.it.uu.se

Example

- The endpoints are assigned an outcode
 - 1000 and 0101 in this case

• $o_1 = o_2 = 0000$

Both endpoints are inside the clipping window

- $o_1!$ = 0000, o_2 = 0000 or vice versa One endpoint is inside and the other is outside
 - The line segment must be shortened

(bitwise AND)

• $o_1 & o_2! = 0000$

Both endpoints are on the same side of the clipping window

Trivial Reject

• $o_1 & o_2 = 0000$

Both endpoint are outside but outside different edges

The line segment must be investigated further

Cohen–Sutherland in 3D

• 27 regions with a 6 bit code

Acknowledgement

- Acknowledgement: Some materials come from the lecture sildes of
 - Prof. Anders Hast, Uppsala Univ.