Digital Differential Analyser DDA

Cons) Floating-point operations are expensive

- A line in 2D is defined as: $y=k x+m$ where: x and y are variables (screen coordinates)
- Starts at $\quad\left(x_{0}, y_{0}\right)$ and ends at $\left(x_{1}, y_{1}\right)$
\square slope: $k=\Delta y / \Delta x=$
$\left(y_{1}-y_{0}\right) /\left(x_{1}-x_{0}\right)$
- Algorithm:
*Start at (x_{0}, y_{0});
*Increase x by 1 and y by k
*repeat until $x=x_{1}$

or Increase y by 1 and x by $1 / k$ if $k>1$

Cohen-Sutherland (in 2D)

- Divide space in 9 regions
- And assign codes to them depending on position \quad 4-bits binary code

1001	1000
0001	0000
0101	0100

The viewport

First bit: above top edge
Second bit: below bottom edge Third bit: Fourth bit: to the left of left edge

Example

- The endpoints are assigned an outcode - 1000 and 0101 in this case

1001	$\rho 1000$	1010
0001	0000	0010
0101	0100	0110

Decision based on the outcode

- $o_{1}=o_{2}=0000$ Both endpoints are inside the clipping window

Decision based on the outcode

- $o_{1}!=0000, o_{2}=0000$ or vice versa One endpoint is inside and the other is outside
- The line segment must be shortened

Decision based on the outcode
 (bitwise AND)

- $O_{1} \& O_{2}!=0000$

Both endpoints are on the same side of the clipping window

- Trivial Reject

Decision based on the outcode

- $o_{1} \& o_{2}=0000$

Both endpoint are outside but outside different edges

- The line segment must be investigated further

Cohen-Sutherland in 3D

- 27 regions with a 6 bit code

Acknowledgement

- Acknowledgement: Some materials come from the lecture sildes of
- Prof. Anders Hast, Uppsala Univ.

